J Math Chem (2015) 53:1426-1444 @ CrossMark
DOI 10.1007/510910-015-0497-3

ORIGINAL PAPER

Three-particle integrals with spherical Bessel
and Neumann functions and photodetachment
of the negatively charged hydrogen ions

Alexei M. Frolov! - David M. Wardlaw?

Received: 17 February 2015 / Accepted: 23 March 2015 / Published online: 31 March 2015
© Springer International Publishing Switzerland 2015

Abstract A few approaches are derived to calculate three-particle integrals which
include spherical Bessel functions of the first and second kind, i.e., the j,(Vr) and
n¢(Vr) functions. Such integrals are important in applications to various problems
known in atomic and nuclear physics. In particular, these integrals are needed in
accurate computations of the photodetachment cross-section(s) of negatively charged
hydrogen ions.
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1 Introduction

In different areas of physics there are real situations where one (or few) particles in
a few-body system becomes free after some ‘fast’ process in the originally stable
system. For instance, the non-relativistic photodetachment of the negatively charged
hydrogen ion H™, leads to the formation of the neutral hydrogen atom H and one
‘free’ electron (emitted photo-electron). Such an electron can be considered as a free
electron, if we can neglect its interaction with the final (neutral) atom. Numerical
calculations of the final state probabilities are reduced to computations of some three-
particle integrals which include spherical Bessel functions of the first and second kind.
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Another example is the formation of the protium and tritium atoms during the (*He,
n; p, t)-nuclear reaction. This reaction is highly exothermic (AE ~ 0.764 MeV).
The energy released during this reaction accelerates two final nuclei (protium and
tritium) to relatively high velocities, which are larger than regular atomic velocities v,
[1]. The formation of final atoms/ions also leads to computations of integrals which
include Bessel functions. The same integrals arise during calculations of the final state
probabilities in atoms/molecules undergoing the nuclear A% -decay.

To define three-particle integrals which include spherical Bessel functions let us dis-
cuss the problem of atomic photodetachment. In the middle of 1940’s Chandrasekhar
tried to develop an effective procedure to calculate the photodetachment cross-section
of the negatively charged hydrogen H™ ion [2—4], i.e. the cross-section of the process
H™ +7%w =H +e™. In his calculations he applied accurate variational wave functions
of the H™ ion which had become avaliable at that time which reduced the original
problem to calculations of the following integral
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where ji(x) = S;sz — % is the Bessel function of the first kind. Also, in Eq. (1) and
below «, B are the positive real numbers, while n1, ny, n3 are the non-negative inte-
ger numbers. To determine the integral, Eq. (1), Chandrasekhar used an approximate
numerical method, since closed analytical formulas for integrals similar to the integral
defined in Eq. (1) were not known.

Later similar integrals we found in various few-body problems. Finally, we need
to consider the problem of analytical and numerical calculations of three-particle
integrals which include spherical Bessel functions of the first and second kind, i.e., the
Jje(Vr) and ng(Vr) functions. The general three-particle integral with the spherical
Bessel function j; (kr3;) is defined in the following form

+00 +0o0 r3xt3n
Jrla, B,y;n1, o, n3) =/ / / exp(—ar3—pBr3i—yra) jrL(Kr3p)
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nj na n3
xr32r31r21dr32dr31dr21 (2)

where n; (i =1, 2, 3) are integer non-negative numbers. This form of the three-particle
integral is more general than defined by Eq. (1). Formally, Eq. (2) can be considered as
the ‘three-dimensional’ Laplace transform of the Bessel function j; (K731). However,
such a definition of Laplace transform leads to a number of problems, since three
relative coordinates 73, 31 and ro; are not truly independent (see discussion below).

General three-body integrals with the spherical Neumann function ny (kr3;) are
defined analogously [5], i.e.
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where «, 8, y are the varied, non-linear parameters (real numbers). In Egs. (2)—(3) the
three variables r3;, r31 and rp; are scalar interparticle distances r;; =| r; —r; |=rj;,
which correspond to the sides (or ribs) of the triangle formed by the three particles 1,2
and 3. Note that the three relative coordinates are not completely independent of each
other, since, e.g., 721 < r3p +r31 and a1 >| r32 —r31 | and this complicates analytical
and numerical computations of the three-body integrals in the relative coordinates.
To avoid numerous problems which follow from partial dependence of the relative
coordinates, in our earlier works we have used three perimetric coordinates u1, uy, u3
which can be expressed as linear combinations of the three relative coordinates 737, 31
and o1 (see, e.g., [6]). The three perimetric coordinates u1, u», u3 are independent of
each other and each of them changes between 0 and +oc. This approach is very general
and quickly leads to closed analytical expressions for the integrals Eqs. (2)—(3) with
different powers of three variables 132, 31 and ro1. However, for certain types of three-
particle integrals, e.g., for integrals in which the function F (r3;, 31, r21) depends upon
one relative coordinate only, the methods based on the perimetric coordinates are too
complex and not very effective in applications. It is clear that in such cases we need to
develop more effective and direct methods for calculations of three-body integrals in
which F(r32, 131, r21) = f(r32), where f(r32) can also be equal to the jr (r32) and/or
np (r3z) functions. With such methods in hand one can say that the original problem
is solved completely and accurately.

Let us discuss another approach which is based on the direct integration of Egs. (2)—
(3) in the relative coordinates. This approach is not universal and it can be applied only
in those cases when the function F (732, r31, r21) depends upon one relative coordinate
only. Below, without loss of generality, we shall assume that F (r32, 31, 121) = f(r32).
In this case the three-particle integral is written in the form

+00 “+o00 r32+r3i
taprin=[ [ [ o
0 0 [r32—=r31]

x exp(—arsy — Br31 — yra)rariradridraidryy “)
or, we can write:
83
I, B,y ) =————J(a, B, v; 5
(@, B,v; ) badfoy (a,B,v: ) (5)

where

+oo  p+00  pr3zh3l
J(, B, y; f)=/ / / f(r32) exp(—arsn—Br31—yra)dridraidryy
0 0 [r32—731]
(6)

Three-particle integrals, Eq. (4), arise in various three- and few-body problems, e.g.,
when the exponential variational expansion in the relative (or perimetric) coordinates

is used to approximate wave functions of the incident (bound) state and the second
particle becomes unbound during such a process. In general, such an expansion is
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very effective in actual bound state calculations, since it is compact and accurate at
the same time (for more detail, see, [7,8] and references therein).

The first approach developed in this study for calculations of the three-particles
integrals, Eq.(4), is based on the following analytical formula for the integral

J(a, B, y; f), Eq.(6):
2 +00
S, B, y: ) = ﬁ{ f(r32) expl—(a + B)r3zldr3;
B=—v*to
+00
—/O f(r32) exp[—(a + J/)r32]d732}
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where it is assumed that 8 # y. Formally, we can say that analytical computations of
the J(a, B, y; f) integrals, Eq.(6), are reduced to computations of the two Laplace
transformations (L) of the function f(x;s) with the two different exponents s; =
o+ B and sp = o + y. With the use of expression, Eq. (7), we can re-write the formula
Eq. (5) in the form

L 0? 2 IL,(fia+B) IL,(f;a+y)
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where LS (f;a + ) = W Note that the term LS (f; a + ) does not

depend upon the non-linear parameter y, while the analogous term L;,a)( fioa+y)
does not depend upon the non-linear parameter 8. These two facts drastically simplify
analytical computation of all derivatives with respect to the non-linear parameters S
and y in Eq.(8).

For the first time, one of us (AMF) derived the formulas, Egs. (7)—(8) in the mid-
1980’s. Since then these formulas have been used in a number of applications, e.g., to
derive analytical expressions for the matrix elements of some short-range potentials.
It should be mentioned that applications of the formula, Eq. (7), are quite restricted,
since the backward transition from Eq. (6) to Eq. (4) leads to numerical instabilities in
the formulas arising in this approach. The source of such instabilities is clear, since the
integral J («, B, v; f), Eq.(7), takes the form 8, when f — y. A meaningful formula
for the % fraction can be obtained with the use of L‘H o pital’s rule, but then we need
to calculate the partial derivatives of the third order from the arising expression. A
general approach for calculations of such integrals is discussed in Sect.2 below. In
Sect. 3 we derive the explicit formulas for the integrals J («, 8, y; f) whichinclude the
spherical Bessel and Neumann functions. Analytical computations of the derivatives
of these formulas are considered in Sect. 4. Concluding remarks can be found in the
last Section.
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2 General approach

In those cases when 8 = y + A, where the value of A is relatively large, one can
apply the formula, Eq.(8), directly. The arising formulas, however, cannot be used
when § — y, or A — 0. Formally, even in such cases we can use Eq.(8), but
its denominator contains the common factor A3, Therefore, to produce some useful
expression in the cases when § — y and B = y we need to show that all terms in
the numerator, which contains the factors A and A2, are cancel each other. Moreover,
to evaluate such expressions in those cases when A ~ 0 we need to produce explicit
formulas for the ‘higher’ terms with the factors A*, A3, etc. Practical experience
indicates that the approach based on Eq. (8) is not an optimal way to derive the explicit
formulas for the three-particle integrals. Instead, we can use a different approach.

Let us replace the two variables g, y by the two new variables y, A, where 8 =
y + A. The variable A is assumed to be small in comparison with each of the 8 and
y variables. In these variables Eq. (8) takes the form

Ia,y+A,y; )=

92 { 2 'LE,“)(f;awLy—l—A)—Lgf‘)(f;owl—y)}
oyonl2y + A A
)

As one can see from this formula, in order to determine the integral / (o, y + A, v; f)
we need to derive the explicit formulas for the first four terms in the Taylor series of
the Lgx)(f; o + y + A) function (in terms of A):

LO(fiat+y+A8)=To+TIA+ LA+ T3A7 + - (10)

This allows one to write the following expression for the 7 (¢, y + A, y; f) integral

82[2

I(oc,J/+A,V;f)=—8y8A A

(T) + A + T3A? +--~)] (11)

where y # 0. This expression is non-singular and analytical calculations of the
two derivatives in Eq.(11) does not present any problem. The derivation of explicit
formulas for the 77, T», T3, and other coefficients of the Taylor expansion of the
Lg,a)( f;a + y + A) function is the last step of this procedure which is much sim-
pler than an alternative method described at the beginning of this Section. Bearing
this in mind, below we discuss analytical derivation of explicit formulas for the

I(o, B,y; 1), J(e, B,y ). I(a,y + A, y; f)and J (o, y + A, y; f) integrals.

3 Formulas for the J («, 8, y; f) integrals

First, we derive the explicit formulas for the integrals J (c, B, y; f) which include the
spherical Bessel and Neumann functions. In the case of the spherical Bessel functions
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Je(x) which are traditionally defined by the equation

. _ 2 _\/7 1 12
Je) = =y @) = | Zx ) (12)

the integral J(«, B, y; f) is written in the form
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where V is a numerical parameter and the two-argument function F is

too 1
Fla+8,V)= /0 3 b JH%(Vrsz) -exp[—(a + B)r32ldri (14)

is the Laplace transform of the r=2 - J, 1 (Vr) function. By using the formula

Eq.(6.621) from [9] we transform the explicit expression for the F'(« + 8, V') function
to the form

Fla+8,V)=

( )l+2

7 e! C+1 041 3
o 3'F( : w+—mﬁ

[(@+p)2+ V27 Tl+3) 22 2

(15)

(< 1) and I'(z) is the Euler’s I'—function [10]. Note that the

1%
where q = m
hypergeometric function in Eq.(15) is written in the form > Fi(a,a;a + a + %; y).
Therefore, with the use of the so-called quadratic transformation we can reduce this
hypergeometric function to the associated Legendre function of the first kind P} (x).
The final expression for the F(« + B, V) function takes the form

Fl@a+pB.V) = (16)

2! 1 -P_f_%( o+ B )
[(«+B)>+V2]3 z

Vil + B>+ V2]

Analogous formulas can be produced for the spherical Bessel functions of the
second kind (or Neumann functions) which are defined by the equation
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ne() = | 2N, 1 (1) = | ZxEIN, 1 () (17)
ax tta T bt

The corresponding three-body integral I (o, B, y; n¢(Vrsyp)) is written in the form

+00  p+00  priyztrig l,
o, B, yine(Vr)) =4/ = / / / 3 Ny 1 (Vo)
r

32731
x exp(—ar3y — Brai — yra1) X dripdriidry
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+00 1_1
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)
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where the G-function is

+00 1
Gla+p.V) = / I3 Nyy1 (V) expl—(a + Przldrs
0

2 £! —e-1 a+p
== : (19)
(\/[(Ol + B)% + V2])

where Q) are the associated Legendre functions of the second kind. The explicit
expression of the G (« + B, V) function written in terms of the hypergeometric func-
tions is extremely cumbersome (see, e.g., the formula at p. 733 in [9]) and is not
presented here.

.0
T+ B2+ V2L 2

4 Formulas for the partial derivatives

As we mentioned above the formulas presented above for the J(«, B, y¥; je(Vr3))
integrals are not the final formulas which can directly be used in calculations. In
actual calculations one needs to determine the third order derivatives from these
integrals with respect to the three parameters «, 8, y [see Eq.(5)]. Only after this
procedure do we find the values which are the final expressions for three-body inte-
grals arising in actual applications. Analytical computation of the partial derivative of
the J(a, B, y; je(Vrap)) integrals with respect to the parameter « is straightforward.
To produce the explicit formulas for such derivatives note that Eq.(15) can also be
written in the form

£! =51 £+1 £+1 3
F+p,V) = e (g7 AT
P 202vr e+ 3 ! 1( 2 2 2 q)
_ NS e+t e+1 .3 5
= A€ V) @)F 2R (5 i+ 50 (20)
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where ¢ 72 and AL, V) = is a g-independent function. The

0
T @ +;3)2 20V2VI(U+3)
partial derivative with respect to the parameter « is determined with the use of the
following relation

of 24" of _of
ba = VI@P =5 1)

where the function f = f(« + B) depends upon the sum « + 8. Analogously, for any
function which depends upon the « + y sum the partial derivative is

on 24 py 2

where the function f7 is of the form f; = fi(«x + y).

Let us apply these formulas to the F'(o + 8, V) function defined in Eq. (20). For
the partial derivative of the F'(« + 8, V) function with respect to « one finds

oF  (a+B)

C+1 +1 3,
)

A VE+D{@HT 2R (5 e+ S

80{ V2
2,649 e+1 L+3 £+3 5 2} oF
: : : s+ 55 =— 23
@0 (2£+3)2‘(2 2 +2q) g B
where we have used the formula
d[>Fi(a, b; c; b
W=%-2Flm+l,b+l;c+1;z> (24)

known from the theory of hypergeometric functions (see, e.g., [10]). These formulas
allow one to determine the explicit expression for the following second-order partial
derivative

2
32F _A(E,V)(Z—i—l)[( 24 g (z+1 el g 2)

dadp V2 2 0 2 2’
where the term Tz(’g ) is
1P = Xy vyt i CRER Gy
(26)
ARG 20 I
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The analogous formula for the F'(« + y, V) function takes the form

oF (a—i—)/) C+1 £+1 3,
= =T ae ve+nf sk P
— = e+ nfp) T oR (5= —S=e+ 5 p?)
2, 49 €+1 £+3 £+3 5 2} oF
. F ; s+ s =— 28
T S0y ‘( ) p) oy
where p? (+y)—2\/2' Note that the partial derivative of the functions F(« + 8, V)

and F(a + y, V), Eq.(20), with respect to the parameters «, 8 and/or y is always
written in the form of a product of the power-type function of g2 (or p?) and the
hypergeometric function » F; which also depends upon the variable ¢ (or p?). This
simplifies analytical (and numerical) computation of the three-particle integrals with

spherical Bessel and Neumann functions. The second order derlvatlve equals

*F _A(e,V)(zH){( N (z+1 L1, .3 2)

dady V2 2 T2 Tt

gy (E+1) £+3 £+3 5 5 @)
. F s 4 = T 29
T e (S S sd) )+ @)

where the term Tz(y) is

2
T2(y) 2((X+)/)

A Vye+D]g? [(qz)@” (“1 ﬂ;u%;f)]

V4 942 2 2

(30)
(E+D) 4 0 oo (043 L4305,
2+3»? % 2[( )2 ( 2 2 ’£+2’q)]} (D

The formulas for the second order derivatives derived above formally solve the
problem of analytical calculations of the integral, Eq.(5), since the F(a + B, V)
function does not depend upon the parameter y, while the analogous function F (o +
y, V) does not depend upon the parameter 8. These parameters can be found only
in the denominators of the integral J(«, B, y; f) defined by Eq. (7). This simplifes
all actual calculations of the partial derivatives upon the third non-linear parameter.
However, there is a special case when 8 ~ y which corresponds to the exact singularity
B = y in the formula, Eq. (7). In such cases to determine all required integrals we
need to introduce a small parameter A = B — y and expand the incident integral
J(a, B,y; ) = J(a, y, A; f) as a power series written in terms of A. Then we need
to consider only a few first terms in these series assuming that the parameter A is very
small and y # 0.
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5 Approach based on the power series expansions of Bessel and
Neumann functions

Another aproach widely used to determine three-particle integrals containing spherical
Bessel and Neumann functions is based on the use of power series expansions for these
functions. In reality, one finds a few different power series expansions for the spherical
Bessel and Neumann functions, e.g., expansions which follow from the well known
expressions of these functions in terms of some elementary functions. In various
applications such expressions often contain trigonometric functions. In particular, the
power series expansions based on trigonometric functions (sinx and cosx) were used
in our earlier paper [6]. Below, we develop a different approach which follows from
the ‘natural’ power series expansion of the spherical Bessel and Neumann functions,
e.g., in the case of spherical Bessel functions

L Z2 Z4
i =L . (1=
1) =z ( 11.2-QL+3)  21-22-QL+3)QL +5)
6
< +
31-23. 2L +3)2L +5 Q2L +7)
2n
+ (=1 : (32)

nl -2 2L +3)2L+5)...-QL+2n+1)

Now, we can assume that in this equation z = pr3», where p is a real, positive number,
and re-write the right-hand side of this equation to the following form

JL@) = by P rk — ba.y ptrk? + bo.py pP L — by pt oL

He (D b p T (33)

— _ 1 _ k 1
where bo;1) = 1, ba;1) = — 3753 and by = (=1) K2FQL+3)--QL+2k+1)

With the help of this expression one finds the following formula for the three-particle
integral J; («, B, y; n1, na, n3), Eq. (2), with the Bessel function j; (r32)

Ji(e, B, yini, na, n3; p)
= bo.) P Trq1 10 ( B, y) — ba:yp" Tz 1, B y)
+b0:) P T 4s 11 (e B, Y)
+ (= 1)"bu) PP T a1 (@, By y) 4 (34)

where the notation I'x ; » (cr, B, y) designates the following auxiliary three-body inte-

gral
+oo  pto0 pr31tr32
Prin(e, By) = / / / ks,
[r31—r32|

x exp(—ar3y — Br31 — yra1)dridriidryy (35)
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where k > 0,/ >0,n >0ando+ f > 0,0+ y > 0and B + y > O (see below).
Analytical computation of this integral has extensively been explained in a number of
earlier studies. Correspondingly, below we restrict ourselves only to a few following
remarks. In perimetric coordinates the integral, Eq. (35), takes the form

rk,z,n<a,ﬁ,y>=2/ / / exp|~(@+ Bus — @+ y)uz = (B+ y)ui |
0 0 0

x (ua + uz) (uy + uz) (uy + w2)"duydusrdus (36)

where we took into account the fact that the Jacobian of transformation from the
relative (32, r31.r21) to perimetric coordinates (11, uz, u3) equals 2. The integration
over three independent perimetric coordinates u; (0 < u; < o0) in Eq.(36) is simple
and the explicit formula for the I';, x ; (o, B, ) integral is reduced to the form

Titsn (et B y)—zz Z Z cicpen

=0/1=0n;=0
y (l—ll-l—kl)! (k — ki +nyp)! (n—ny+10)!
(Ol + ,3)1—11+k1+1 (Ol + V)k_kl+nl+l (ﬁ + V)n_nl+ll+]

Ckl k Cll<1 ki+1 Clnll
n—ni+ky “k—ki+l; TI-l1+n
” ZOIZ%)Z_:O ot B TR (@ 4y e 4yt 7

=2-kl-lln

where C}" are the binomial coefficients (= number of combinations from k by m) (see,
e.g., [9]).

Our computational results for some three-particle integrals with the Bessel func-
tions jz (pr3z) can be found in Table 1, where a significant attention is given to the
three-particle integrals which are important in calculations of the photodetachment
cross-section of negeatively charged hydrogen ions. Thismeansn| = 1,n; = 1, n3 =
1, L =1 (or 0), p < 0.25, etc. Some other integrals with L =2 and 3 are also shown
in Table 1. Tables 2 and 3 contain the photodetachment cross-section of the “H™ ion
determined for a number of different values of p = p, (momentum of the outgoing
photoelectron). All details of our calculations can be found in [5]. To determine the
photodetachment cross-sections given in Tables 2 and 3 we used four approximate
eigenfunctions of the ground 1! S—state of the “H~ ion which contain 100, 200, 300
and 350 basis exponential functions in the relative coordinates r3», 31, 21 (see dis-
cussion in [5]). Numerical highly accurate computations of the three-particle integrals
Ji(e, B, v; 1,1, 1; p) with the spherical Bessel jj (pr32) function plays a cenral role
during these calculations. Accurate and complete evaluation of the photodetachment
cross-section of negeatively charged hydrogen ions is a paramount importance for
prediction of the opacity of Solar photosphere for infrared and visible radiation and
for accurate calculations of the thermal balance at our planet. Absorption of radiation
by the negatively charged hydrogen ions also plays a crucial role in the photospheres
of the late A-stars, F, G and K stars (for more details, see, e.g., [5] and [11-14]).
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We have represented the unknown integral J; («, B, y; n1, na, n3; p) in the form
of a sum of some special auxiliary three-body integrals I'y2,.1.1(e, B, y) for
m = 0,1, 2,.... Analytical and numerical calculations of the three-particle integrals
which include the corresponding Neumann functions ny (pr3;) are significantly more
difficult, since some of the (first) three-particle auxiliary integrals I'_x 1 1(c, B, ¥)
arising during this process and included in the expansion similar to Eq. (34) are singu-
lar. Each singular integral contains a few singular terms which depend upon the cut-off
parameter € as In€ + yg, % eLZ 6%, etc, where yg =0.577215 664901 53286. . . is the
Euler constant. The general structure of these integrals can be understood from the
explicit expressions for some of them

168y [In(e + ) — In(@ + )] 4 8 y
F—l;l;l(a,ﬂ,)’)— (,83—)/2)3 +(ﬁ2_y2)2|:0l+]/+a+ﬂ]
(38)
1 - 1
Mg Bry) = —ame— V(D [(GaBy +3F% + ) In(@ + B)

B+v)?  B-yD)
168y
— (4 38y% 4+ BH1 -
(4aBy + 3By~ + ) In(a + y)] BT3B =77

4 +4oe(lne—1//(2)) +4ﬂy(2a+,3+y)
eB+y) B+y) B+y)3(B—y)?
4@+ WleBBy? + B2 + By 2® + B2 + y?)

(B* —y?)3
_4In(@ + Blay B> + v + By Qa® + 7 +y?)
B> —y?3

(39)

s B,y) =

(40)

where 1/ (n) is the is the psi-function (or i function) [9] (see pp. 952-956). For
positive integer n the psi—function is: ¥ (n) = —yg + Zz;ll % and yg is the Euler
constant (see above).

It is clear the auxiliary integral I'_;. .1 (@, B, y) is not singular, while the integrals
I'_2.1:1(a, B, y)and I'_3.1.1 (a0, B, y) are singular. Note thatall I'_,.1.1 (e, B, y) inte-
grals with n > 2 contain the regular part and principal (or singular), e-dependent part.
This complicates operations with such integrals.

6 Recursion formula for three-particle integrals
Another approach in the calculation of the three-particle integrals integrals is based

on the well known recursion relations [15] for the spherical Bessel and Neumann
functions

2L + 1
1@ = (o) @ = i) and
2L +1
nn@ = (Z )@ = nii2) 1)

@ Springer



J Math Chem (2015) 53:1426-1444 1443

By assuming that z = r3» in both equalities and calculating three-particle integrals
Egs. (1) and (2) from both sides of these equations one finds the two following rela-
tions:

Jryi1(ni,np,n3) = 2L+ 1)JL(ny — 1,n2,n3) + Jr—1(n1,n2,n3)  (42)
and
Nigi(ni,na,n3) = QL+ DNp(ny — 1,n2,n3) + Np—1(ny,nz,n3)  (43)

for three-particle integrals with the Bessel and Neumann functions, respectively.
The equalities Egs.(42) and (43) allow one to determine the three-particle inte-
grals on the right-hand sides of these equalities, if we know the three-particle
integrals from their left-hand sides. In Egs.(42) and (43) we apply the following
short notations which are simply related with the corresponding notations from in
Eqgs.(1) and (2): Jr(n1,n2,n3) = Jr(a, B, y:ni, na,n3) and Np(ny,na, n3) =
Ni(a, B, y; ny, na, n3). The approach based on the use of recursion formulas for the
Bessel and Neumann functions is an effective way to compute a large number of three-
particle integrals with different powers of the relative coordinates (n1, ny and n3). Itis
important to note that this approach does not lead to any loss of numerical accuracy.

7 Conclusion

We have developed a few different approaches which can sucessufully be used in
calculations of three-particles integrals containing spherical Bessel functions of the
first and second kind (or Bessel and Neumann functions, respectively). One of these
methods is based on the use of the general analytical formula, Egs. (6)—(7), derived
for three-particle integrals written in the relative coordinates r3,, 31 and r;1. In actual
applications this new approach has a number of obvious advantages. Another approach
is based on the use of power series expansions for the Bessel and Neumann functions.
Based on our experience in evaluating three-particle integrals containing spherical
Bessel functions of the first and second kind in any application, it is important to use
a few different approaches to determine such integrals and compare final results in
terms of numerical stability and overall accuracy.
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